PHOTONICS Research

Time shifting deviation method enhanced laser interferometry: ultrahigh precision localizing of traffic vibration using an urban fiber link: publisher's note

GUAN WANG,^{1,2,†} ZHONGWANG PANG,^{1,2,†} BOHAN ZHANG,¹ FANGMIN WANG,^{1,2} YUFENG CHEN,^{1,2} HONGFEI DAI,^{1,2} BO WANG,^{1,2,*} AND LIJUN WANG^{1,2}

¹State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China

²Key Laboratory of Photonic Control Technology (Tsinghua University), Ministry of Education, Beijing 100084, China *Corresponding author: bo.wang@tsinghua.edu.cn

Received 28 June 2022; posted 28 June 2022 (Doc. ID 469200); published 19 July 2022

This publisher's note corrects the title in Photon. Res. 10, 433 (2022). © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.469200

The title in Ref. [1] originally reads as follows:

Time shifting deviation method enhanced laser interferometry: ultrahigh precision localizing of traffic vibration using a urban fiber link

The article "a" is corrected as "an," as shown at the beginning of this note. The article [1] was corrected online on 8 April 2022.

[†]These authors contributed equally to the original paper.

REFERENCE

 G. Wang, Z. Pang, B. Zhang, F. Wang, Y. Chen, H. Dai, B. Wang, and L. Wang, "Time shifting deviation method enhanced laser interferometry: ultrahigh precision localizing of traffic vibration using an urban fiber link," Photon. Res. **10**, 433–443 (2022).